教育部112年度中小學科學教育計畫專案 期中報告大綱

計畫編號:3-6

計畫名稱: ICT 融入高中化學實驗課程(第一年)

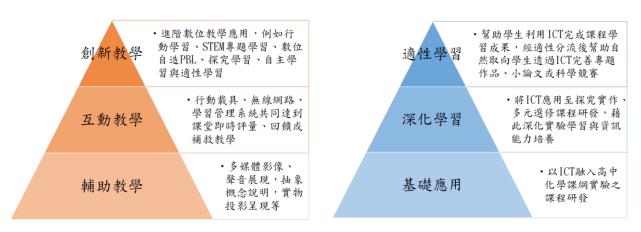
主 持 人:陳映辛執行單位:竹山高中

壹、計畫目的及內容:

(一) 前言

化學是眾多應用科學之基礎,其核心價值不外乎觀察實作與歸納,而科學學習之理想狀態,當緣於好奇心或解決問題、改善需求,且科學課程的訓練更應包含眾多能力,根據 Hofstein 與 Lunetta(1982,2001)的研究,實驗室裡帶來的學習優勢包含科學知識、操作技能、科學態度,而在開放式的環境中,透過現象觀察、紀錄、分析、推理、驗證…等過程,更能激發學生因好奇心與求知慾,產生主動學習動力,展現出極佳的學習成效。

目前化學科課程相關實驗,仍以訓練傳統實驗操作技能為主,這將對學生的學科應用與真實情境連結帶來鴻溝,不利於科學素養培養,因此隨著資訊與科技進步,應當針對化學實驗課程做改善,確保 ICT 成為深度學習之工具,而教師亦應具備 ICT 融入之課程設計能力,因此本計畫欲以化學課綱實驗作為研究主軸,針對高中各冊發展出至少一份 ICT 融入化學實驗課程,以開創之心達啟發推廣 ICT 融入化學課程之目標。


研究顯示 ICT 在課室中學習整合上具有許多優點(Costley, K. C., 2014),包含增強學生動機、提高學生參與、深化學生協同合作、深化實踐式學習的機會、加強差異式學習、提升學生自信、增加科技能力。針對化學科學習上,ICT 有即時回饋能幫助學生更快理解抽象觀念、減少繁複計算或操作,且能輔助學生將質性描述以量化方式呈現,若再搭配小組合作的實驗活動,將能大幅提高學習成效,因此 ICT 融入化學實驗教學不只是配合未來人才所需之數位能力,更有其優勢及必要性。

(二) 計畫目的綜述

現行108自然領域課程綱要特別強調科學學習的方法,應當從激發學生對科學的好奇心與主動學習的意願為起點,納入真實情境,引導其從既有經驗出發,進行主動探索、實驗操作與多元學習,使學生能具備科學核心知識、探究實作與科學論證溝通能力。

ICT於化學實驗教學上具備眾多優勢,既可讓學生擺脫繁瑣流程,專注於思考討論與溝通,又能使化學學習與當代科學確實連結,拓展學生知識與經驗,當中的即時回饋更能使學習焦點放在整體問題與抽象概念,便於繼續探索深入知識而非零散瑣碎操作。

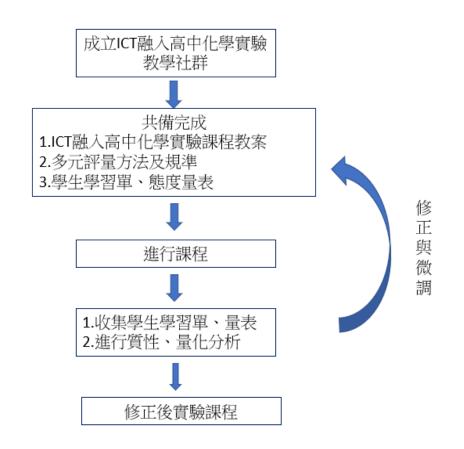
即便ICT融入化學實驗教學雖有許多優勢,在實際課室卻礙於過去習慣未能普及應用。因此本計畫欲利用三年期程逐步深化ICT融入高中化學實驗課程,由社群教師作為先鋒探索可行工具、發展課程,執行並蒐集學生實作回饋、提供學生成果發表舞台展現多元學習成果,後續持續研發,並針對以研發單元進行改良,並將課綱實驗可使用工具逐步延伸至自然探究實作、多元選修課程,讓ICT不再侷限於特定人士或研究領域,真正內化為學生學習伴隨之工具。

圖(四)教育部教師應用數位科技教學層次(左)與本計畫 ICT 融入課程研發層次(右)

根據2018年教育部教師應用數位科技於教學的層次區分,數位科技應用有 三階層:

- 1. 輔助教學(第一階):透過多媒體影像、聲音展現,抽象概念說明、實物投影呈現等。
- 2. 互動教學(第二階):行動載具、無線網路、學習管理系統共同達到課 堂即時評量、回饋或補救教學。
- 3. 創新教學(第三階):進階數位教學應用,例如行動學習、STEM 專題學習、數位自造 PBL、探究學習、自主學習與適性學習

(三) 計畫內容


本計畫仿照三階段概念,將ICT融入一般高中化學課綱實驗之研發計畫區分為三階層進行:

- 1. 基礎應用(第一階):以ICT融入高中化學課綱實驗之課程研發
- 2. 深化學習(第二階):將 ICT 應用至探究實作、多元選修課程研發,藉 此深化實驗學習與資訊能力培養
- 3. 適性學習(第三階): 幫助學生利用 ICT 完成課程學習成果,經適性分流後幫助自然取向學生透過 ICT 完善專題作品、小論文或科學競賽

綜合以上,ICT融入化學實驗教學有其必要性,欲達學生關鍵能力培養,需自教師專業發展出發,逐步提高研發課程之深度,並於執行中改良、修訂、精進。更階段須逐步踏實,方能建立自根本建立厚實基礎,培育出具全球移動力、就業力、創新力、跨域力、資訊力、公民力等六大基礎關鍵能力之未來人才。

貳、研究方法及步驟:

1. 研究方法及步驟(流程圖)

2. 課程實施對象

本計畫將以高中普通科一年級學生、二年級自然組學生、三年級自然組學生為課程實施對象,課程中將部分的課綱實驗(一學期一個實驗為主)融入 ICT 教學,並實施多元評量,收集學生學習單、態度量表,進行量化及質性分析。

3. 設計 ICT 融入的實驗,如下表(一)紅字部分,共7個。

必修(全)	1. 示範實驗:萃取、蒸餾及以 TLC 片 進行色層分析。
	2. 實驗:溶解度的測定(溶解度曲線和 結晶)。
	3. 實驗:酸鹼指示劑
	4. 實驗:界面活性劑的效應
選修化學(一)	1. 實驗:測量強酸強鹼之中和熱及硝酸鉀溶 於水之熱
物質與能量	量變化。
	2. 示範實驗:理想溶液與非理想溶液體積的 差異。
	3. 實驗:凝固點下降的現象(不涉及分子量 的測定計
	算)。
選修化學(二)	1實驗:秒錶反應。
物質構造與反應速率	
選修化學(三)	1. 實驗:平衡的移動(勒沙特列原理)。
化學反應與平衡一	2. 實驗:平衡常數
	3. 實驗:酸鹼滴定
選修化學(四)	1. 實驗:氧化還原反應。
化學反應與平衡二	2. 實驗:氧化還原滴定。
	3. 實驗: 電解電鍍與無電電鍍。
	4. 示範實驗:鐵離子與草酸根形成的錯合物
選修化學(五)	1. 實驗:以電腦模擬或實體模型觀察有機分子的結構。
有機化學與應用科技	2. 示範實驗:有機化合物的一般性質(揮發 性、溶解
	度等)。
	3. 示範實驗:常見官能基的檢驗。
	4. 實驗:醇、醛及酮的性質。
	5. 實驗:製備阿斯匹靈。
	6. 實驗:水汙染的檢測

參、目前完成進度、研究成果:

完成4個 ICT 融入高中化學實驗

必修(全)	實驗(全):酸鹼指示劑(附件一)
選修化學(一)	實驗(一):凝固點下降的現象(不涉及分子量 的測定計
物質與能量	算)(附件二)
選修化學(三)	實驗(三):平衡常數(附件三)
化學反應與平衡一	
選修化學(五)	實驗(五):以電腦模擬或實體模型觀察有機分子的結構
有機化學與應用科技	(附件四)

- (1) 設計實驗(附件一~四)
- (2)建立多元評量方法(附件五)
- (3) 發展學生學習單、態度量表(附件六)

肆、 預定完成進度

原及九风延及	
研究時間表	內容
第一年上學期	1. 成立 ICT 融入高中化學實驗教學社群,每個月共備
112. 08. 01~113. 01. 31	一次,
	共6次
	2. 完成4個 ICT 融入高中化學實驗
	(必修、選化(IV) 、選化(V))
	(1) 設計實驗
	(2)建立多元評量方法
	(3) 發展學生學習單、態度量表

伍、討論與建議(含遭遇之困難與解決方法)

- 1. 在傳統實驗加入 ICT 是必要的,因為 ICT 融入實驗教學有下列優點:
 - (1) 強化教學效果: ICT 可以提供生動直觀的教學方式,例如模擬動畫、視覺化的實驗教學材料等,這有助於提高學生對實驗內容的理解和興趣,增強教學效果。
 - (2) 提供即時數據: 在實驗過程中,立即數據的收集和分析,可以 迅速地獲得實驗結果,還能夠幫助他們更深入地理解實驗原 理。
 - (3) 提供更精準的數據: 藉由辨色 APP 提供更精準客觀的數據,使得誤差更小
 - (4) 跨學科整合: ICT 的應用有助於將不同學科領域進行整合,實現跨學科教學。例如,化學、資訊等可以透過 ICT 整合在一起,將所學應用在實驗上。

所以,化學實驗融入 ICT 是必要性的。

2. 目前遭遇問題:

- (1)我們先將實驗設計出來,學生接受度是否高?
- (2)有一些 ICT 融入實驗,我們設計傳統法與 ICT 融入法比較,是否會增加實驗時間,以致壓縮上課進度?
- 3. 解決辦法:

下學期真正做實驗時,遇到問題再討論、修正

陸、參考資料

- 1. 教育部建立校園數位科技教學計畫
- 2. 108課綱
- 3. 廖旭茂(2020)。利用智慧型手機結合 App 探究化學平衡移動。臺灣化學教育電子期刊,37。網址

http://chemed.chemistry.org.tw/?p=37556

附件一:實驗(全):酸鹼指示劑

利用智慧型手機與色彩 APP 分析廣用指示劑色碼並調查未知液 pH 值

■ 前言

化學實驗上,溶液的濃度高低的判斷除了目測比色法外,就是使用相對精準的分光光度計;但分光光度計雖然精準,但價格昂貴,無法讓每一個學生都能參與實驗觀察。在一次氯化亞鈷的平衡移動實驗中,看到學生關於藍顏色的記錄,有的說淺藍色,有人紀錄為海洋藍,各種藍色描述說法都不盡相同。突然天外飛來一筆,順口問了學生一句:「可以利用App來記錄溶液的顏色嗎?」,學生想到可以利用手機來做實驗相當開心,開始搜尋適合的辨色App,如ColorMeter Free(安卓系統),因為安卓手機較為普遍,也開始了我們使用該App紀錄顏色的旅程(廖旭茂,2020)。下圖為利用手機App紀錄試管內溶液的顏色。

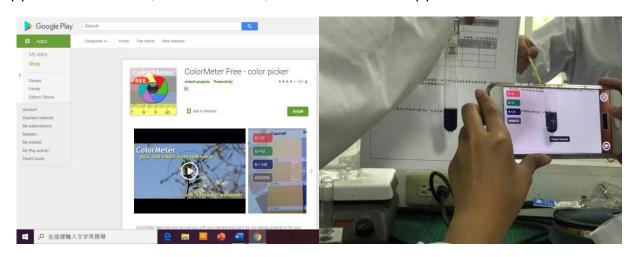


圖1:圖左為App的下載位置截圖,圖右為學生使用App來做為溶液顏色鑑定過程

在網頁設計時,顏色採用的標示有幾種方式,有一種是使用RGB色彩碼,標記方式是RGB(0~255,0~255,0~255)。RGB值為(255,0,0)為純紅色,(0,255,0)為純綠色,(0,0,255)為純藍色,(255,255,255)為白色,(0,0,0)為黑色;另一種是設計師常用的16進位碼Hex,表示法為1個#,後面加上六位數字,如純紅色的色碼值紀錄為#FF0000、純藍色的色碼值紀錄為#000FF、純綠色的色碼值紀錄為#00FF00;最後一種是HSL(Hue, Saturation, Lightness)色彩碼寫法,如HSL(120,50%,20%)。本次使用的較淺顯易懂的RGB色彩碼,其中每個顏色數值會是0~255 共256種數值,每一種顏色都有一個RGB色碼值,因此混合後總共可以產生256×256×256等於16,777,216種網頁色彩。

本次課程將修改上週配置不同酸鹼值溶液的方法,將小孔盤改成10毫升燒杯,將滴數放大成毫升數,每組分別配置 $pH=1\sim6$ (酸)、 $pH=13\sim8$ (鹼)各六種溶液,再加入3滴的單一

指示劑(廣用指示劑或蝶豆花指示劑)。

各組將配置好的酸鹼溶液,依 pH 大小依序排列,建立指示劑的酸鹼圖譜。並與老師配置的圖譜相比較是否顏色有所差異。

接著利用智慧型手機結合色彩 APP-ColorPicker 來測量、分析 $pH=1\sim13$ 酸鹼溶液與 $A\sim D$ 四種未知溶液的色碼值;除了目測法外,藉此色碼值分析比對、調查 $A\sim D$ 未知溶液的 pH 值。最後我們將透過一般 pH 計來確認未知溶液的 pH 值,與指示劑色碼法相比較。

■ 探索:設計實驗、進行實驗、收集資料及分析資料

【器材和藥品】

■ 器材(每組):10毫升量筒7個、10毫升燒杯2個、試管14根(含試管架)、3毫升塑膠滴管2支、pH meter 一支、100毫升燒杯1個、手機、手機支架。

使用強酸、強鹼,具腐 蝕性,請注意安全!

藥品(每組): 0.10 M HCl(已標定)10毫升 1.00 M NaOH
 (已標定)10毫升、廣用指示劑5毫升或5%蝶豆花5毫升、蒸餾水10毫升、未知溶液甲、乙、丙、丁各5毫升。

【探索實驗一】: 製作指示劑的彩色圖譜(廣用或蝶豆花)並調查未知液 pH

- 1. 取一支 3 毫升塑膠滴管·在盛有 0.10 M 的 HCI 溶液的塑膠瓶中吸取鹽酸溶液·加入 10 毫升的量筒 1 中·至刻度為 9.0 毫升·以黑色細簽字筆在空白處寫上 A₁;接著以滴管再吸取 HCI 溶液·加入另 1 支 10 毫升的量筒 2 中隨後以另一支乾淨塑膠滴管·在盛有蒸餾水的塑膠瓶中吸取蒸餾水·加入量筒 2 中至刻度為 10.0 毫升·以小攪拌棒攪拌後·以黑色細簽字筆寫上 A₂;隨後將取過鹽酸的塑膠滴管在盛滿蒸餾水的燒杯中清洗後·以乾淨衛生紙擦乾滴管·再利用此滴管吸取 A₂溶液·加入另 1 支 10 毫升的量筒 3 中·至刻度為 1.0 毫升·隨後以另一支乾淨塑膠滴管·在盛有蒸餾水的塑膠瓶中吸取蒸餾水·加入量筒 3 中·至刻度為 10.0 毫升·以小攪拌棒攪拌後·以黑色細簽字筆寫上 A₃。
- 2. 重複步驟 1 · 配製 A_4 至 A_6 · 最後再以乾淨的滴管從 A_6 吸出約 1 毫升溶液 · 至體積 為 9 毫升 · 接著將 A_1 ~ A_6 量筒內 · 體積 9 毫升溶液倒入已貼標籤 6 根試管 A_1 ~ A_6 內 ·

- 【注意】:為避免配製溶液的交叉污染,吸鹽酸溶液的滴管與吸蒸餾水的滴管不可混用,吸鹽酸後的滴管必須以蒸餾水徹底清洗乾淨,以衛生紙擦乾。否則會影響指示劑的呈色。
- 3. 承 1, 2 以同樣方法稀釋 NaOH 溶液: 分別以 0.10M 的 NaOH、蒸餾水、量筒刻度配置不同鹼度的溶液,由 B_1 至 B_6 分別表示 pH 值約為 13~8 的溶液。每根試管溶液皆為 9 毫升。將 $B_1~B_6$ 量桶內的溶液依序倒入事先貼好標籤將 $B_1~B_6$ 的 6 支試管中。
- 4. 另取 1 量筒 \cdot 加入 9 毫升的蒸餾水 \cdot 當作 pH = 7 的中性溶液 \cdot 倒入 1 支試管 N_7 中 \cdot 並將 13 個裝有溶液的試管依 pH 大小順序排列放置試管架內 \cdot
- 5. 滴加 5 滴的指示劑於試管中,攪拌均勻備用。若有兩種指示劑,單數組別添加廣用 指示劑、偶數組別添加紫色高麗菜指示劑。各組完成 pH = 1~13 的酸鹼彩色圖譜。並 利用手機拍下已完成的彩色圖譜照片,以作為實驗紀錄和討論之用。
- 6. 取 甲~丁四種未知液各 9 毫升·接著滴入 5 滴指示劑·則 A~D 四種溶液的顏色為何?與上述溶液顏色比對·目視推測四種未知溶液的 pH 值範圍。

【探索實驗二】: 以手機結合色彩 APP 測量分析各種酸鹼溶液的色碼值,並分析未知液的色碼值,並調查未知液的 pH 值範圍

1. 手機預先安裝好 ColorPicker APP 後打開 APP,首先將手機放置手機架上,鏡頭對準 LED 燈台的中心點十字後,接著將 A_7 試管的溶液倒入 10 毫升的燒杯中,並放置在 LED 燈台圓圈位置,按下快門鍵,即可紀錄溶液顏色的 RGB 值。並計算 $\frac{R}{R+G+B}$ 色碼 比值。下圖為燈檯與色碼偵測畫面。

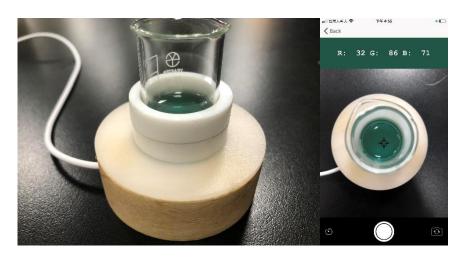


圖2:圖左為燈檯,圖右為色碼 APP 偵測畫面

- 2. 將燒杯內溶液倒回 A_7 試管,將燒杯清洗乾淨。承上述 1 步驟,依序將 $A_1\sim A_6$ 燒杯放置在 LED 燈台圓圈位置,紀錄溶液顏色的 RGB 值,並以電腦 Excel 計算 $\frac{R}{R+G+B}$ 比值的大小。
- 3. 以溶液 pH 值為橫座標, $\frac{R}{R+G+B}$ 值為縱座標作圖,依圖說出 $\frac{R}{R+G+B}$ 值隨 pH 值的變化。
- 4. 承 1, 2,依序將 N_7 、 $B_1 \sim B_6$ 燒杯放置在 LED 燈台圓圈位置,紀錄溶液顏色的 RGB 色碼值,並以電腦 Excel 計算 $\frac{R}{R+G+B}$ 、 $\frac{B}{R+G+B}$ 值的大小。
- 5. 以溶液 pH 值為橫座標, $\frac{R}{R+G+B}$ 、 $\frac{B}{R+G+B}$ 、 $\frac{R}{R+B}$ 值為縱座標,以電腦 excel 作圖,並說明 色碼值與 pH 的關係。
- 6. 取甲 \sim 丁四種未知液,承上 1, 2 步驟,依序紀錄溶液顏色的 RGB 值,並計算 $\frac{R}{R+G+B}$ 、 $\frac{B}{R+G+B}$ 、 $\frac{R}{R+B}$ 值;將數值帶入作圖中,嘗試判斷四種未知液酸鹼值的大小。

【探索實驗三】: 以 pH meter 測量溶液的 pH 值

- 1. 機器校正:取一 pH 計電極,以裝有蒸餾水的洗瓶清洗後,以面紙輕輕吸乾水分, 隨後將電極,置入 PH=7 的緩衝溶液中,按下數字穩定後,按下 CAL 校正鍵,使螢幕的數字顯示為 7.00,若測量酸性溶液 A_1 ~ A_6 ,需再使用 pH=4 的緩衝標準液校正 過;若測量鹼性溶液 B_1 ~ B_6 ,需再使用 pH=10 的緩衝標準液校正過
- 2. 將甲溶液倒入 10 毫升的燒杯,將 pH 電極置入燒杯中,測量溶液的 pH 值。待數字穩定後,紀錄溶液 pH 值。
- 3. 取出電極,以蒸餾水清洗乾淨,並以面紙輕輕吸乾水分;隨後將燒杯內溶液倒回 A_1 試管中,並將燒杯以蒸餾水清洗乾淨。
- 4. 承上步驟,隨後依序測量乙~丁溶液的 pH 值,並紀錄之。
- 5. 將比較目視法、APP 色碼法與 pH 計測量結果相比較,嘗試說明並推論其中的差異, 並推論哪一種方法較為精準?

■【實驗結果與紀錄】: 收集資料及分析資料

1. 請貼上【探索實驗一】自己製作的指示劑酸鹼圖譜照片,並說出個酸鹼值溶液的顏色。(請說明廣用指示劑或紫色高麗菜)

2. 未知液酸鹼值判斷:根據指示劑不同酸鹼值下的顏色,目測判斷 A~D 四種溶液的 pH。

試管	A_1	A_2	A ₃	A ₄	A ₅	A_6	蒸餾水 N ₇	B ₆	B ₅	B ₄	B ₃	B_2	B ₁
рН	1	2	3	4	5	6	7	8	9	10	11	12	13
未知液 pH A B						С			D				
預測範圍													

3. 將 $A_1 \sim A_6$ 酸性溶液的 RGB 色碼值、 $\frac{R}{R+G+B}$ 值記錄在下表中,並以溶液 pH 值為橫座標, $\frac{R}{R+G+B}$ 值為縱座標作圖,作為酸性溶液比對圖 P_a 。

試管 色碼	A_1	A_2	A ₃	A4	A ₅	A_6
R						
G						
В						
R						
$\overline{R+G+B}$						

【作圖區(貼圖)】:

4. 將 $N_7 \times B_1 \sim B_6$ 酸性溶液的 RGB 色碼值、 $\frac{B}{R+G+B} \times \frac{R}{R+B}$ 值記錄在下表中,並以溶液 pH 值為橫座標 $\frac{R}{R+G+B} \times \frac{B}{R+G+B} \times \frac{R}{R+B}$ 值為縱座標作圖,作為中 \sim 鹼性溶液比對圖 P_b 。

試管色 碼	N ₇	B_1	B_2	B ₃	B ₄	B ₅	B ₆
R							
G							
В							
$\frac{R}{R + C + R}$							
R+G+B B							
R+G+B							
$\frac{R}{R+B}$							

【作圖區(貼圖)】:

5. 將甲 \sim 丁四種未知溶液的的 RGB 色碼值、 $\frac{B}{R+G+B}$ 、 $\frac{R}{R+B}$ 值記錄在下表中,並依照溶液酸鹼性,代入 Pa、Pb 圖中,分別標出未知液色碼比值的相關位置,並判斷 pH 值範圍。

試管色碼	甲	Z	丙	丁
R				
G				
В				
$\frac{R}{R+G+B}$				
R+G+B				
$\overline{R+G+B}$				
$\frac{R}{R+B}$				

6. 將甲 \sim 丁四種未知溶液 pH 值的測量結果,填入表格中與顏色目測、RGB 色碼比值推 測結果相比較,哪一種方法較為精確?

	甲	Z	丙	丁
目測比對 pH				
色碼預測 pH				
pH 計測量 pH				

【說明】:

【延伸問題與實驗】: 自行配置的溶液的酸鹼性真的準確嗎?

1.	自行配置的溶液的 pH 值真的準確嗎?若以 pH 計實際測量的結果有何不同?哪一個
	酸鹼範圍與檢測儀測量的結果誤差最大?哪一個範圍誤差最小?

2. 若排除稀釋過程中所發生的人為誤差,強酸鹽酸與強鹼氫氧化鈉在水中真的百分之 一百解離嗎?如果強酸與強鹼沒有 100%解離,試討論看看酸的解離度與濃度之間的 關係(作圖表示,縱座標是酸或鹼的解離度,橫坐標是濃度)。

■ 參考文獻

廖旭茂 (2020)。利用智慧型手機結合 App 探究化學平衡移動。**臺灣化學教育電子期刊**,37。網址 http://chemed.chemistry.org.tw/?p=37556

附件二:實驗(一):凝固點下降的現象(不涉及分子量 的測定計算)。 凝固點下降的現象(不涉及分子量的測定計算)

實驗名稱:凝固點下降的現象(不涉及分子量的測定計算)

實驗目的:1.學習製作冰鹽混合冷劑

2.熟悉測量純水以及水溶液凝固點的方法

3.觀察純水和水溶液降溫時,溫度變化的情形,並能繪出物質的降溫曲線

4.結合生活科技內容,引導學生學習 Illustrator 與 Blender 軟體,讓學生完成 溫度計的自造。

實驗原理:純溶劑為純物質,有固定的熔點與沸點;而溶液為均勻的混合物,沒有固定 的熔點與沸點。在溶劑中加入非揮發性溶質時,其蒸氣壓會下降,使得沸點 升高,而凝固點則會下降,其結果如圖 X 所示。

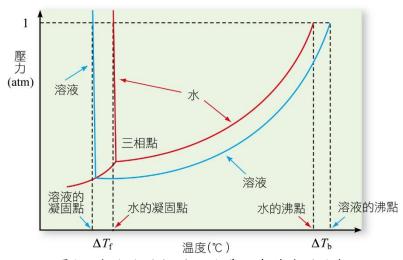


圖1 水溶液的凝固點及沸點與純水的比較

本實驗以水做為溶劑,取代有機溶劑的使用,可降低環境汙染的困擾。溶質分別採用尿素 $((NH_2)_2CO)$ 、葡萄糖 $(C_6H_{12}O_6)$,分子量分別為60、180,易取得且無汙染,也可讓同學由實驗數據發現其相關性。

實驗器材及藥品:

器材 (每組)

燒杯 1000 mL	2個	攪拌棒	1支
試管	3支	雙孔橡皮塞	1個
溫度計 (−10°C~50°C)	1支	鐵架及鐵夾	1組
碼錶	1個		

試藥 (每組)

蒸餾水	100 mL	冰塊(當冷劑)	300 克
尿素 CO(NH ₂) ₂	約2克	食鹽(當冷劑)	100 克
甘油 C ₃ H ₅ (OH) ₃	約2克	未知試藥	約2克

實驗一、使用傳統溫度計

實驗步驟:

A. 水的凝固點測定:

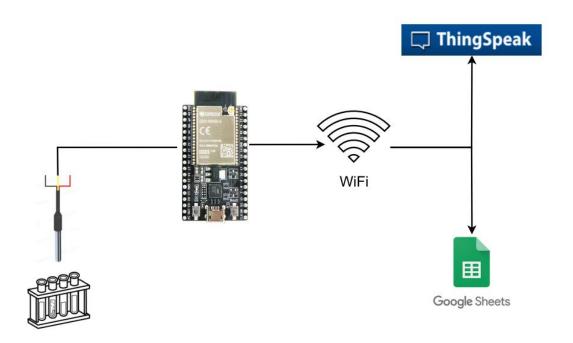
1. 取 1 個 1000 毫升的燒杯,將碎冰和食鹽 (食鹽:冰=1:3)混和,當冷劑用

5. 將所得數據,在方格紙上作圖。以時間 為橫坐標、溫度為縱坐標, 求得水的凝 固點

- 2. 將溫度計及攪拌棒小心插入橡皮塞的鑽 孔中
- 3. 取10.0毫升水,倒入試管中;將步驟2 的橡皮塞塞於試管管口
- 4. 將試管置入冷劑中,以鐵夾固定裝置, 每10秒記錄一次溫度,實驗中必須不停 攪動攪拌棒

- B. 尿素水溶液及葡萄糖水溶液凝固點的測定:
- 1. 稱取約2.0克尿素(記錄至0.01克),將所 2. 將試管置入冷劑中,以鐵夾固定裝置, 稱得尿素和 10.0 毫升水, 置於試管中, 攪拌至完全溶解
 - 每10秒記錄一次溫度,實驗中必須不停 攪動攪拌棒

3. 將所得數據,在方格紙上作圖。以時間 為橫坐標、溫度為縱坐標,求得尿素水 溶液的凝固點

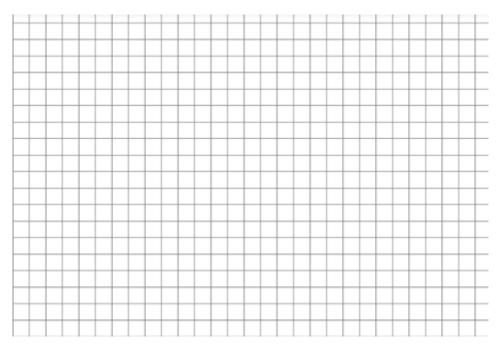


4. 另秤取 2.0 克葡萄糖(記錄至 0.01 克),將 所稱得葡萄糖和 10.0 毫升水,置於試管 中,攪拌至完全溶解,重複實驗步驟 2~3,求得葡萄糖水溶液的凝固點

<注意事項>

- 1. 溫度計插入橡皮塞時,應將溫度計塗水潤溼並以抹布包裹,以轉動方式慢慢旋入,避免 溫度計斷裂,造成手可能被玻璃劃傷。
- 2. 試管放入冷劑時要小心,可事先預留試管空位,避免試管放入時碰撞破裂。

實驗二、使用「自造溫度計」,重複 A、水的凝固點測定,B、尿素水溶液及葡萄糖水溶液凝固點的測定


凝固點下降的現象實驗學習單

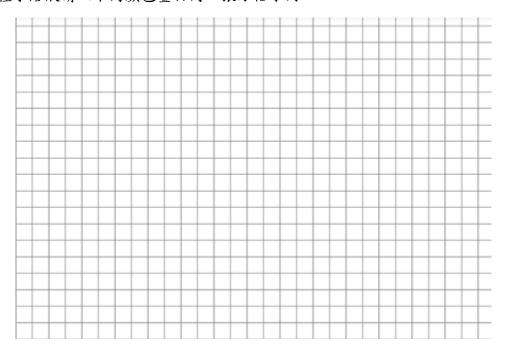
一、實驗結果與數據實驗一、使用傳統溫度計

A. 水的凝固點測定:

紀錄次數	1	2	3	4	5	6	7
溫度(℃)							
紀錄次數	8	9	10	11	12	13	14
溫度(℃)							
紀錄次數	15	16	17	18	19	20	21
溫度(℃)							
紀錄次數	22	23	24	25	26	27	28
溫度(℃)							
紀錄次數	29	30	31	32	33	34	35
溫度(℃)							

作圖:由圖形得知蒸餾水的凝固點為____℃

B. 尿素水溶液及葡萄糖水溶液凝固點的測定:


<尿素水溶液>

紀錄次數	1	2	3	4	5	6	7
溫度(℃)							
紀錄次數	8	9	10	11	12	13	14
溫度(℃)							
紀錄次數	15	16	17	18	19	20	21
溫度(℃)							
紀錄次數	22	23	24	25	26	27	28
溫度(℃)							
紀錄次數	29	30	31	32	33	34	35
溫度(℃)							

<葡萄糖水溶液>

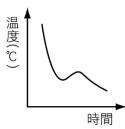
紀錄次數	1	2	3	4	5	6	7
溫度(℃)							
紀錄次數	8	9	10	11	12	13	14
溫度(℃)							
紀錄次數	15	16	17	18	19	20	21
溫度(℃)							
紀錄次數	22	23	24	25	26	27	28
溫度(℃)							
紀錄次數	29	30	31	32	33	34	35
溫度(℃)		_	_	_		_	

作圖:兩種水溶液請以不同顏色畫於同一張方格子內

由	昌	形	得	知

實驗二、使用自造溫度計

A、水的凝固點測定:將實驗表格截圖貼上


B、尿素水溶液及葡萄糖水溶液凝固點的測定:將實驗表格截圖貼上

二、問題與討論

1. 為何在測量凝固點時,不直接將試管放入冷劑中操作此實驗?

2. 為何在記錄凝固點下降時,溫度計須儘量不要移動,但攪拌器卻必須持續攪拌?

3. 若以時間為橫坐標,溫度為縱坐標,凝固點下降實驗所得數據繪製圖形如右所示,請問 這是發生了何種狀況?如何求出溶液的凝固點?

4.請說明使用傳統溫度計法與自造溫度計法的優缺點與心得

附件三:實驗(三):平衡常數

平衡常數的測量

實驗名稱:平衡常數的測量

實驗目的:1.了解比色法的原理

2.藉由比色法測定 Fe³⁺(aq)+SCN⁻(aq)

FeSCN²⁺(aq)反應的平衡常數

實驗原理:1.設 Fe^{3+} 、 SCN^- 初始濃度分別為 $[Fe^{3+}]_0$ 、 $[SCN^-]_0$,若能測得平衡時 $FeSCN^{2+}$ 的 濃

度 X, 即能算出該反應的平衡常數。

計算式如下:

2.以比色法求 x:

(1)配製標準(已知濃度的) $FeSCN^{2+}$ 溶液:假設其反應之 K 值夠大,當 $[Fe^{3+}]$ > > $[SCN^-]$,則 $[Fe^{3+}]$ 與 $[SCN^-]$ 之反應可視為完全反應,即 $[FeSCN^{2+}]$ = $[SCN^-]_0$ 。

(2) 測平衡時[FeSCN²⁺](aq) (待測液)的濃度 x:

- 溶液顏色:Fe³⁺(aq)為淡黃色,產物 FeSCN²⁺(aq)為深的血紅色,故平衡時溶液呈血紅色。
- 比爾定律:於兩同樣口徑試管加入不同濃度的相同溶液,兩溶液透光度相同時,溶液濃度 C 與管內溶液高度 h 成反比:

$$C_1h_1 = C_2h_2$$
 , $C_1/C_2 = h_2/h_1$, All $C_2 = C_1h_1/h_2$

C1:標準液濃度(已知), C2:待測液濃度(未知)

● 比色時,將分別含有標準液及待測液的比色管外壁包上黑紙或黑布(防止光由管壁進入比色管內),比色管直立放在光源上,眼睛在管口由上朝下觀察兩管內的顏色,以滴管調整較濃比色管(標準液)內的溶液體積,使兩管透光度一致,利用上述公式求 x,即可得平衡時 [FeSCN²+](aq)(待測液)的濃度。

實驗器材及藥品:

器材 (每組)

比色管(18×115毫米)	5支	滴管	2支
燒杯 (50毫升)	1個	分度吸量管(25毫升)	2組
烷桥(30笔列) 		安全吸球	
燒杯(100毫升)	1個	容量瓶(25毫升)	1個
尺 (15公分)	1支	黑紙(10公分×5公分)	1張
標籤紙	數張	試管架	1個
比色裝置或比色箱	1組		

試藥 (每組)

0.0000000000000000000000000000000000000			
0.0020 M 硫氰化鉀溶液	25毫升	0.25 M 硝酸鐵酸性溶液	20毫升

配法(全班用量):

1. 0.0020M 硫氰化鉀溶液:

取0.194克的硫氰化鉀(KSCN,0.0020莫耳)溶於適量蒸餾水中形成1000毫升的溶液。

2. 0.25M 硝酸鐵的酸性溶液:

取10.10克的硝酸鐵($Fe(NO_3)_3 \cdot 9H_2O$,0.025莫耳)溶於80毫升的0.1M 硝酸中,再加入 適量蒸餾水,最終形成100毫升的溶液。

實驗步驟:

A. 序列稀釋硝酸鐵溶液:

依照下表序列稀釋,分別得到不同濃度的硝酸鐵溶液

溶液標記	硝酸鐵溶液來源	加水稀釋成
甲	0.25M 硝酸鐵的酸性溶液	
乙	取甲溶液10毫升	25毫升
丙	取乙溶液10毫升	25毫升
丁	取丙溶液10毫升	25毫升
戊	取丁溶液10毫升	25毫升

B. 以比色法測定平衡常數:

1. 在 5 支乾淨比色管上,編列①,②,③,④,⑤,並於每 試管中各加入 5.0 mL 的 0.002 M KSCN 溶液,觀察 溶液所呈顏色

2. 取 5.0 mL 序列稀釋後的硝酸鐵溶液(甲~戊),分別加入比色管編號①~⑤中,觀察溶液所呈顏色

比色管	加入溶液			
編號	硫氰化鉀	序列稀釋後硝酸鐵		
1		甲 5.0 mL		
2	0.002.16	こ 5.0 mL		
3	0.002 M 5.0 mL	丙 5.0 mL		
4	3.0 IIIL	丁 5.0 mL		
(5)		戊 5.0 mL		

- 3. 將①與②比色管各繞上黑色的紙,垂直並置於光源上,由管口上方向下俯視。若兩支 試管溶液的顏色深淺不等,如1號的深於2號時,則用滴管吸出1號試管中的溶液 (吸出的溶液應置於乾淨的燒杯中,留作滴回用),直至兩支試管內的溶液顏色深淺相 同,用尺量其高度至毫米(mm),記錄1號與2號比色試管的液面高度比。
- 4. 比色的裝置及操作如下圖所示。

吸出顏色較深的管中溶液,置入乾淨燒杯備用。

5. 依照步驟(3),將①與③、①與④、①與⑤分別比色,並記錄①比色管與各比色試管的 液面高度比。

6. 利用比爾定律,求得相對[FeSCN²⁺] (aq)的濃度,並推得平衡常數

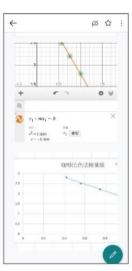
7. 將上述實驗,使用手機 App 輔助,再記錄一次數據,並比較兩次實驗結果



數值分析

利用數值分析軟體如excel、Desmos等,由相 對濃度及亮度的數據得出檢量線。

18


整合輸出

將測量過程、筆記、裝置照片、數據分析截圖……等,整合到一個Arduino SJ 的實驗筆記中,並可匯出PDF檔案。

平衡常數的測量學習單

平衡常數的測定

A、眼睛觀察

項目	①號 比色管	②號 比色管	③號 比色管	④號比色管	⑤號 比色管
混合後[Fe ³⁺] 初始濃度(M ₁)					
混合後[SCN ⁻] 初始濃度(M ₂)					
標準管(1號)與他管溶液 高度比值(h/h _l)					
[FeSCN ²⁺]平衡濃度(M ₃)					
[Fe ³⁺]平衡濃度(M ₁ -M ₃)					
[SCN ⁻]平衡濃度(M ₂ -M ₃)					
平衡常數 [FeSCN ²⁺] K _C = [Fe ³⁺][SCN ⁻]	視為完全反應				

平衡常數 Kc 的平均值=

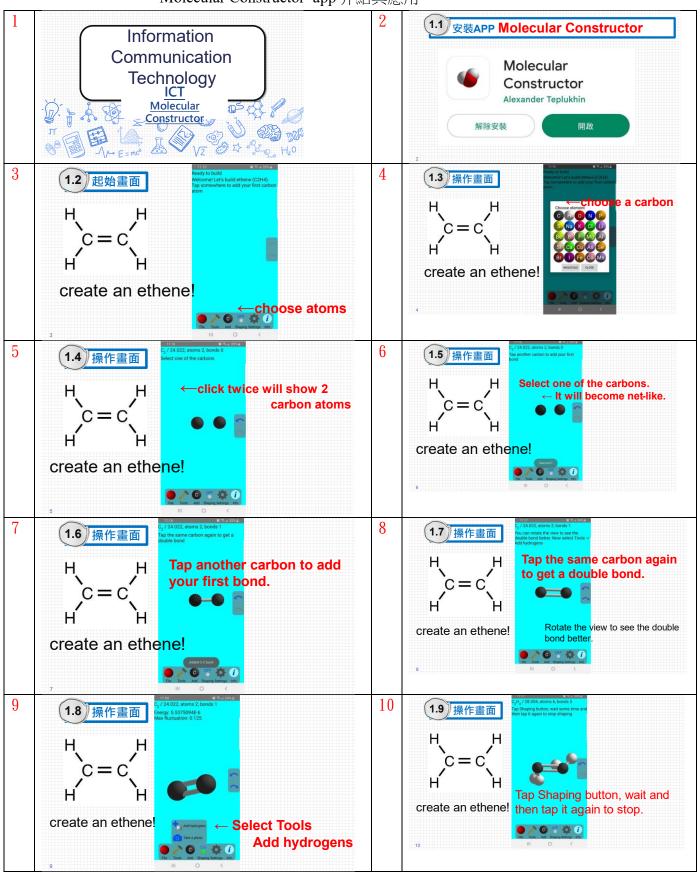
B、用手機 App 觀測

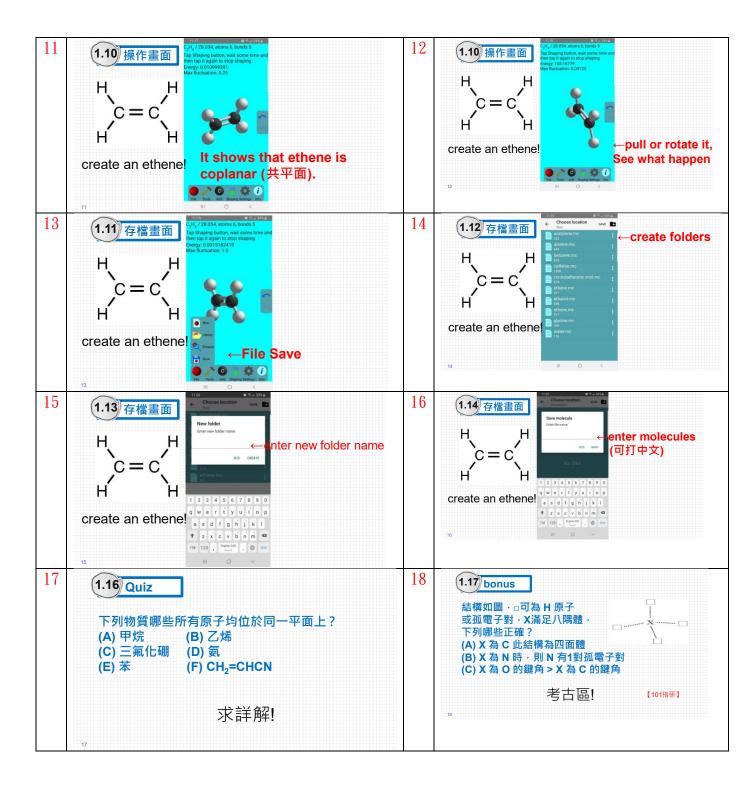
項目	①號 比色管	②號 比色管	③號 比色管	④號比色管	⑤號 比色管
混合後[Fe ³⁺] 初始濃度(M ₁)					
混合後[SCN ⁻] 初始濃度(M ₂)					
標準管(1號)與他管溶液 高度比值(h/h _l)					
[FeSCN ²⁺]平衡濃度(M ₃)					
[Fe ³⁺]平衡濃度(M ₁ -M ₃)					
[SCN ⁻]平衡濃度(M ₂ -M ₃)					
平衡常數 <u>[FeSCN²⁺]</u> $K_C = \overline{[Fe^{3+}][SCN^-]}$	視為完全反應				

平衡常數 Kc 的平均值=

lacktriangle	問	題	與	討	論

1. 比色法測量平衡常數有何優缺點?不同同學的比色結果差異如何?


2. 為何比色管為平底?又為何比色時須以黑紙包覆比色管呢?


3. 為何可將一號試管視為完全反應呢?若不這樣操作,有辦法求出平衡常數嗎?為什麼?

4. 若欲利用本實驗藥品與原理,嘗試設計「溫度高低是否影響平衡常數」,請分別列出控制變因、操縱變因與應變變因?

5. .請說明使用傳統比色法法與 APP 輔助法的優缺點與心得

附件四:實驗(五):以電腦模擬或實體模型觀察有機分子的結構。 Molecular Constructor app介紹與應用

附件五: 多元評量

多元評量規準表

	()	評分項目	グロ 人 山 口 日 し い)		
1 above to al.	(並非全部皆使用	,教師可視各實驗技	采取合適評量方式)		
1.實驗報告	畿性的實驗報告,內	突句钎實驗日的 、	大壮、	fn 红铃。	
	战任的真 <u>微报</u> 台,內 舌實驗的進行是否符				
				•	
□卓越	□良好	□適中	□需要改進	□很差	
質性說明:					
2.口頭報告					
	,向班上或小組成員		m k 11 mm bm bb		
評估項目可能包括	舌表達清晰度、專業	術語的使用、對實	驗的理解等		
□卓越	□良好	□適中	□需要改進	□很差	
質性說明:					
3.實驗室筆記					
評估學生在實驗室	宦中記錄的筆記,包	括觀察、實驗步驟	、數據和結果。		
可以展示學生的實	實驗過程管理和觀察	能力			
	□良好	□適中	□需要改進	□很差	
質性説明:					
X 1= 35 74					
4.實驗技能評估					
	支能,包括操作儀器	、標定、實驗室安	全和實驗室清潔等	0	
評估學生的實驗技能,包括操作儀器、標定、實驗室安全和實驗室清潔等。 這有助於確保學生在實驗室中能夠安全而有效地工作					
□卓越	□良好	□適中	□需要改進	□很差	
, -		⊓ ⊼া ়ি ⊥	□而女以连	□1以左	
質性說明:					

5.小組合作評估

如果實驗是以小組形式進行,

評估學生在小組中的合作能力,包括分工、溝通、協作和解決問題的能力

□卓越	□良好	□適中	□需要改進	□很差
質性說明:				
6.自評和同儕評估				
	進行評估,同時也	評估同儕的工作。		
	對自己和他人的評			
□卓越	□良好	□適中	□需要改進	□很差
質性說明:				
7.實驗設計和改進				
• •	設計實驗,以及在	實驗過程中是否能	始谁行改谁。	
	思維和解決問題的		1211 M2	
□卓越	□良好	□適中	□需要改進	□很差
質性說明:				
× 12.00 /4				

附件六:態度量表

• • • • • • • • • • • • • • • • • • • •			非常不同意	>-非常同意
學	1.	使用科技工具和多媒體資源讓我更願意投入學習。		
3 <u>3</u>	2.	使用科技工具和多媒體資源學習能激發我對學科探索興趣。		
動	3.	在使用數位教材後,我對學習的興趣有所提升。		
機	4.	資訊融入教學使我更有動力克服學習中的困難。		
	5.	資訊融入教學激發了我主動尋求知識的意欲。		
	6.	我認為資訊融入教學讓我對學習的目標更加清晰。		
學	1.	資訊融入教學的方式使我更願意認真投入學習。		
737 E	2.	相教育傳統方式,數位學習工具提高我對學科喜愛程度。		
態	3.	學習過程中的資訊融入實例應用增強了我學科學習的信心。		
度	4.	數位工具帶來的挑戰比傳統,更讓我有克服困難的意願。		
	5.	學習過程中的互動性讓我學習時感到興奮並更加享受學習。		
	6.	資訊融入教學激發了我主動迎接挑戰的勇氣。		
合	1.	相較於過去,我在數位學習中更願意參與討論和分享觀點。		
作	2.	資訊融入教學增進了我在小組合作中的溝通能力。		
和	3.	我在資訊融入學習過程中感受到自己團隊合作技能更成長。		
溝	4.	資訊融入教學提高我與同學合作完成任務的效率。		
通	5.	透過數位工具搭配,讓我更容易與同儕合作並分享資訊。		
	6.	透過資訊融入學習,我更能運用科技工具進行合作溝通。		
科	1.	相較於傳統,資訊融入教學讓我更容易學習學科內容。		
學	2.	我覺得透過多媒體資源學習能提升我的學科知識。		
學	3.	使用數位工具讓我更容易理解學科中複雜抽象的內容。		
727 百	4.	我認為資訊融入教學能使我的科學成績產生積極影響。		
	5.	我認為資訊融入教學對我的科學學業有實際助益。		
	6.	資訊融入教學使我在科學學習更容易找到實際應用機會。		
數	1.	資訊融入教學使我對電腦和數位工具的使用更熟練。		
位	2.	我的資訊搜尋技能在學習過程中提高了。		
素	3.	我能選用合適工具使學科學習或研究更加有效率。		
養	4.	資訊融入教學強化了我的資料分析和處理能力。		
	5.	我能使用這些數位工具幫助進行學科知識整合能力。		
	6.	未來在不同領域學習中,我也能使用這些數位或資訊工具。		
解	1.	經過資訊融入學習後,我更能夠有系統地整理思路。		
決	2.	經過資訊融入學習後,我更善於分析和整合資訊。		
問	3.	資訊融入教學培養了我的邏輯思維和推理能力。		
題	4.	資訊融入教學,讓我學會運用不同方法來解決學科問題。		
能	5.	學習過程中的案例分析,讓我更善於應對實際生活挑戰。		
力	6.	整體來說透過資訊融入教學,可提升我的解決問題的能力。		